Genomic and cDNA sequence tags of the hyperthermophilic archaeon Pyrobaculum aerophilum.
نویسندگان
چکیده
The hyperthermophilic archaeum, Pyrobaculum aerophilum, grows optimally at 100 degrees C with a doubling time of 180 min. It is a member of the phylogenetically ancient Thermoproteales order, but differs significantly from all other members by its facultatively aerobic metabolism. Due to its simple cultivation requirements and its nearly 100% plating efficiency, it was chosen as a model organism for studying the genome organization of hyperthermophilic ancient archaea. By a G+C content of the DNA of 52 mol%, sequence analysis was easily possible. At least some of the mRNA of P. aerophilum carried poly-A tails facilitating the construction of a cDNA library. 245 sequence tags of a poly-A primed cDNA library and 55 sequence tags from a 1-2 kb Sau3AI-fragment containing genomic library were analyzed and the corresponding amino acid sequences compared with protein sequences from databases. Fourteen percent of the cDNA and >9% of genomic DNA sequence tags revealed significant similarities to proteins in the databases. Matches were obtained to proteins from archaeal, bacterial and eukaryal sources. Some sequences showed greatest similarity to eukaryal rather than to bacterial versions of proteins, other matches were found to proteins which had previously only been found in eukaryotes.
منابع مشابه
Characterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum.
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methan...
متن کاملnitrate - reducing hyperthermophilic archaeum . Pyrobaculum aerophilum sp . nov
A novel rod-shaped hyperthermophilic archaeum has been isolated from a boiling marine water hole at Maronti Beach, Ischia, Italy. It grew optimally at 100°C and pH 7.0 by aerobic respiration as well as by dissimilatory nitrate reduction, forming dinitrogen as a final product. Organic and inorganic compounds served as substrates during aerobic and anaerobic respiration. Growth was inhibited by e...
متن کاملProperties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
The nitrate reductase of the hyperthermophilic archaeon Pyrobaculum aerophilum was purified 137-fold from the cytoplasmic membrane. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the enzyme complex consists of three subunits with apparent molecular weights of 130,000, 52,000, and 32,000. The enzyme contained molybdenum (0.8-mol/mol complex), iron (15.4-mol/mol comp...
متن کاملEffect of tungstate on nitrate reduction by the hyperthermophilic archaeon pyrobaculum aerophilum
Pyrobaculum aerophilum, a hyperthermophilic archaeon, can respire either with low amounts of oxygen or anaerobically with nitrate as the electron acceptor. Under anaerobic growth conditions, nitrate is reduced via the denitrification pathway to molecular nitrogen. This study demonstrates that P. aerophilum requires the metal oxyanion WO42- for its anaerobic growth on yeast extract, peptone, and...
متن کاملA thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum.
Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N:-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 24 22 شماره
صفحات -
تاریخ انتشار 1996